{ "cells": [ { "cell_type": "code", "execution_count": 40, "id": "b7a45b11", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 41, "id": "d5051d3d", "metadata": {}, "outputs": [], "source": [ "from compute_vector_feature import *\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 43, "id": "56752746", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(75768, 5)\n", "131072\n" ] }, { "ename": "TypeError", "evalue": "slice indices must be integers or None or have an __index__ method", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mTypeError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[43]\u001b[39m\u001b[32m, line 12\u001b[39m\n\u001b[32m 9\u001b[39m eegdata = df.to_numpy()\n\u001b[32m 10\u001b[39m \u001b[38;5;28mprint\u001b[39m(eegdata.shape)\n\u001b[32m---> \u001b[39m\u001b[32m12\u001b[39m ret = \u001b[43mcompute_feature_vector\u001b[49m\u001b[43m(\u001b[49m\u001b[43meegdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mFs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 13\u001b[39m ret\n", "\u001b[36mFile \u001b[39m\u001b[32m~/workspaces/git.anishalle.me/musi/compute_vector_feature.py:20\u001b[39m, in \u001b[36mcompute_feature_vector\u001b[39m\u001b[34m(eegdata, Fs)\u001b[39m\n\u001b[32m 17\u001b[39m # 1. Compute the PSD\n\u001b[32m 18\u001b[39m winSampleLength, nbCh = eegdata.shape\n\u001b[32m---> \u001b[39m\u001b[32m20\u001b[39m # Apply Hamming window\n\u001b[32m 21\u001b[39m w = np.hamming(winSampleLength)\n\u001b[32m 22\u001b[39m dataWinCentered = eegdata - np.mean(eegdata, axis=0) # Remove offset\n", "\u001b[31mTypeError\u001b[39m: slice indices must be integers or None or have an __index__ method" ] } ], "source": [ "# sampling rate\n", "Fs = 256\n", "temp_file = \"data/hasini/brain_1761337390.csv\"\n", "\n", "df = pd.read_csv(temp_file)\n", "\n", "df.drop(columns = 'timestamps',inplace=True)\n", "\n", "eegdata = df.to_numpy()\n", "print(eegdata.shape)\n", "\n", "ret = compute_feature_vector(eegdata, Fs)\n", "ret\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 5 }