Files
musi/main.ipynb
2025-10-29 21:48:54 -05:00

101 lines
3.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 40,
"id": "b7a45b11",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "d5051d3d",
"metadata": {},
"outputs": [],
"source": [
"from compute_vector_feature import *\n",
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "56752746",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(75768, 5)\n",
"131072\n"
]
},
{
"ename": "TypeError",
"evalue": "slice indices must be integers or None or have an __index__ method",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mTypeError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[43]\u001b[39m\u001b[32m, line 12\u001b[39m\n\u001b[32m 9\u001b[39m eegdata = df.to_numpy()\n\u001b[32m 10\u001b[39m \u001b[38;5;28mprint\u001b[39m(eegdata.shape)\n\u001b[32m---> \u001b[39m\u001b[32m12\u001b[39m ret = \u001b[43mcompute_feature_vector\u001b[49m\u001b[43m(\u001b[49m\u001b[43meegdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mFs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 13\u001b[39m ret\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/workspaces/git.anishalle.me/musi/compute_vector_feature.py:20\u001b[39m, in \u001b[36mcompute_feature_vector\u001b[39m\u001b[34m(eegdata, Fs)\u001b[39m\n\u001b[32m 17\u001b[39m # 1. Compute the PSD\n\u001b[32m 18\u001b[39m winSampleLength, nbCh = eegdata.shape\n\u001b[32m---> \u001b[39m\u001b[32m20\u001b[39m # Apply Hamming window\n\u001b[32m 21\u001b[39m w = np.hamming(winSampleLength)\n\u001b[32m 22\u001b[39m dataWinCentered = eegdata - np.mean(eegdata, axis=0) # Remove offset\n",
"\u001b[31mTypeError\u001b[39m: slice indices must be integers or None or have an __index__ method"
]
}
],
"source": [
"# sampling rate\n",
"Fs = 256\n",
"temp_file = \"data/hasini/brain_1761337390.csv\"\n",
"\n",
"df = pd.read_csv(temp_file)\n",
"\n",
"df.drop(columns = 'timestamps',inplace=True)\n",
"\n",
"eegdata = df.to_numpy()\n",
"print(eegdata.shape)\n",
"\n",
"ret = compute_feature_vector(eegdata, Fs)\n",
"ret\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}